

Therapeutic antibody concentrations at the biophase

Miro J. Eigenmann

Workflow

- **Experimental work**
- **PBPK modeling**
- Conclusion
- **Acknowledgements**

Background

Total tissue concentration vs. concentrations in tissue subcompartments

Commonly reported total tissue concentrations represent a mixture of all three spaces!

Clinically mostly just plasma measurements available!

Aim

Refine assessment and PBPK based prediction of therapeutic antibody PK in the tissue interstitial space

- Correction of total tissue concentrations
- > Direct experimental assessment
- > PBPK model based prediction

Workflow

- **Experimental work**
- **PBPK modeling**
- Conclusion
- **Acknowledgements**

Workflow

1. Biodistribution study

Workflow

Experimental work

PBPK modeling

Conclusion

Acknowledgements

Collect biodistribution Data

Measuring PK in plasma & total tissue PK in 11 tissues

- Untargeted IgG
- I.v. Dose: 10 mg/kg
- > 3 mice / time point
- 10 sampling times

Manuscript in preparation: Eigenmann M.J. et. al, All rights reserved

Tissue composition and volumes

Assess residual plasma, extracellular and interstitial volumes in tissue samples

⁵¹Cr-EDTA with 60 min distribution time for ECV

 $fVec = \frac{{^{51}Cr\ counts}/{1g_Tissue}}{{^{51}Cr\ counts}/{1mL_Plasma}}$

¹²⁵I-HSA with 5 min distribution time for residual plasma

 $fVres.pla = \frac{^{125}I \ counts/1g_Tissue}{^{125}I \ counts/1mL_Plasma}$

Residual plasma correction

Derive tissue extravascular concentrations

Subtract drug in residual plasma from totally measured amount of drug

Manuscript in preparation: Eigenmann M.J. et. al, All rights reserved

Residual plasma correction

Derive tissue extravascular concentrations

Subtract drug in residual plasma from totally measured amount of drug

Tissue centrifugation – Interstitial PK

Direct experimental assessment of interstitial concentrations

- Centrifuge tissue sample in tube at low speed
- Collect fluid sample at the bottom of the tube¹

¹Wiig, H. et al. *Isolation of interstitial fluid from rat mammary tumors by a centrifugation method.* American journal of physiology. Heart and circulatory physiology, 2003.

Workflow

Experimental work

PBPK modeling

Conclusion

Acknowledgements

Impact on PBPK model

Integrate data into PBPK model & refine model

Tissues modeled based on underlying capillary types:

- Continuous (---)
 - Distinct interstitial & vascular space
 - Uptake & lymph flow estimated
- Discontinuous (------)
 - Interstitial & vascular space equilibrated, not distinguishable based on data
 - Uptake & lymph flow not identifiable
- ➤ Tight (—)
 - Antibodies largely restricted to vascular space
 - Negligible uptake & lymph flow not identifiable

Model based analysis

Describe biodistribution data and predict drug amount in tissue subcompartments

Workflow

Experimental work

PBPK modeling

Conclusion

Acknowledgements

Conclusion

> Interstitial antibody concentrations are highly tissue specific:

- Depend on underlying capillary structure
 - Continuous capillaries: ~50-60% of plasma concentration
 - Discontinuous capillaries: reflected by plasma concentrations
 - Tight capillaries: restricted to vasculature → negligible interstitial concentrations
- More tissue specific implementation into PBPK model
- Allows more realistic model based predictions of the PK in the interstitial space

Workflow

Experimental work

PBPK modeling

Conclusion

Acknowledgements

Contribution & Acknowledgement

Prof. Helge Wiig Assoc. Prof. Tine Karlsen

Prof. Olav Tenstad

Dr. Michael Otteneder Dr. Ben-Fillippo Krippendorff

Thanks to Sherri Dudal and Ludivine Fronton for support & planning in the beginning of the project.

Thanks to all colleagues in the lab in Norway, the QSP and large molecule PDM lead group at Roche Basel for all discussions and support!

Thank you!

Questions?

Doing now what patients need next